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ABSTRACT

The rise of personal assistants has made question answering a
very popular mechanism for user-system interaction. In Ques-
tion Answering System, implicit feedbacks can be easily ob-
served (user clicking in the link given by the QA system), but
they are noisy. However, receiving an explicit feedback on
the quality of the response just given is rare but more valu-
able. Motivated by a practical need in Question Answering
System of processing these two types of rewards, this paper
investigates and proposes a new stochastic multi-armed ban-
dit model in which each action has a noisy reward and a sparse
reward. We studied this problem in the contextual bandit set-
tings, and proposed and analyzed efficient algorithms that are
based on the LINUCB frameworks. Our algorithms are veri-
fied by empirical studies on various reward distributions and
a real-world dataset and application.

Index Terms— QA System, Online Learning, Bandit,
Contextual Bandit.

1. INTRODUCTION

Sequential decision making is a common problem in many
practical applications where the agent must choose the best
action to perform at each iteration in order to maximize the
cumulative reward over some period of time. One of the key
challenges in this process is to achieve a good trade-off be-
tween the exploration of new actions and the exploitation of
known actions. This exploration vs exploitation trade-off in
sequential decision making is often formulated as a multi-
armed bandit (MAB) problem: given a set of bandit “arms”
(actions), each associated with a fixed but unknown reward
probability distribution [1, 2, 3, 4, 5, 6], an agent selects an
arm to play at each iteration, and receives a reward drawn ac-
cording to the selected arm’s distribution independently from
the previous actions.

A particularly useful version of MAB is the contextual
multi-armed bandit (Contextual-MAB), or simply the contex-
tual bandit problem, where at each iteration, before choosing
an arm, the agent observes an N -dimensional context, or fea-
ture vector. Over time, the goal is to learn the relationship
between the context vectors and the rewards in order to make

better predictions of which action to choose given the context
[7]. In this paper, we consider a new problem setting, referred
to as bandit with Sparse and Noisy rewards, where the agent
observes two rewards, one which is noisy and another one
which is sparse.

This setting is motivated by a real-world applications. For
Question answering, the online services sequentially choose
a response among several alternatives and display this option
to the user. Customers clicking on the displayed option can
indicate their interest, however a less noisy feedback could be
observed by having the user rating the the QA system answer.
In this specific setting, the user clicking on a chosen content
can be considered as a noisy reward which is a proxy for the
sparse reward. Another scenario of receiving noisy rewards in
addition to sparse rewards can occur in movie recommenda-
tion settings. When the user chooses to watch a movie, this
can be seen as a positive feedback on the movie. Then, the
sparse reward is the rating that the user may give or not.

Motivated by the above scenarios, this paper focuses on
handling the problem of multi-armed bandit with Sparse and
Noisy rewards. The bandit framework proposed here aims to
capture the scenarios described above through providing an
approach so as to always exploit the noisy rewards. We first
review some existing methods in multi-armed bandit and pro-
pose extensions to accommodate our problem setup. Then we
proceed by proposing novel algorithm called ILINUCB, for
this setting. Finally, we demonstrate the effectiveness of the
proposed algorithms with experiments on various reward dis-
tributions and a real-world dataset.

2. RELATED WORK

The multi-armed bandits provide a solution to the exploration
versus exploitation trade-off, informing a player how to pick
an action within a finite set of decisions while maximizing
cumulative reward in an online learning setting. Optimal so-
lutions have been developed for a variety of problem formu-
lations [2, 8, 9, 10, 11]. In Linear Upper Confidence Bound
(LINUCB) [12, 13] and in Contextual Thompson Sampling
(CTS) [7, 14], the authors assume a linear dependency be-
tween the expected reward of an action and its context, whereIC
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the representation space was modeled using a set of linear
predictors.

Several authors have considered different types of re-
wards. A variant of the stochastic MAB problem is discussed
in [15], where the rewards are corrupted. In this framework,
motivated by privacy preserving in online recommender sys-
tems, the goal is to maximize the sum of the (unobserved)
rewards, based on the observation of transformation of these
rewards through a stochastic corruption process with known
parameters. Another variation on the type of reward is ex-
plored in [16], authors present a general framework to model
the relationship between partial and delayed feedback for the
best arm identification problem in multi-armed bandits. Sim-
ilarly, in [17], the authors study reinforcement learning with
two streams of rewards where one reward is positive and the
other one is negative.

A notion of more than one reward at a time is studied in
[18], which is motivated by an online advertisement system.
In order to reduce the cost of communication, the ad exchange
stores the reward, and sends a pile of rewards to the system
when sufficient number of rewards are gathered. The authors
adapt the LINUCB algorithm to deal with the piled-reward
setting. Similarly, and motivated by delayed conversions in
advertising, [19, 20, 21] authors present a delay-adaptive al-
gorithm for generalized linear contextual bandits using UCB-
style exploration. Note that, this delayed reward setting could
be another direction to explore the two rewards setting that
we are proposing in this paper, where one of the rewards is
delayed. These algorithms assume that the bandit can observe
one reward at each iteration, which is different than our prob-
lem setting, where the learner receives two rewards at each
iteration such that, one of the rewards is more noisy than the
other.

In [22], multiple rewards at each iteration is studied where
the goal is the multi-objective aggregation of rewards. They
presented a novel approach for dynamically optimizing mul-
tiple reward metrics simultaneously via multi-armed bandit
approach in the context of language generation. Note that, this
work is dealing with rewards for different objective, where in
our case we have one objective. Compared to the previous re-
lated art, to the best of our knowledge, this is the first work
to study the problem of consuming two types of rewards after
each action.

3. CONTEXTUAL BANDIT WITH SPARSE AND
NOISY FEEDBACK.

In this setting (Algorithm 1), at each time t ∈ [T ], a player
is presented with a context vector xt ∈ Rd, where ∥xt∥2 ≤
1, and must choose an arm k ∈ [K]. We operate under the
linear realizability assumption, i.e., for all k ∈ [K], there exist
unknown weight vectors θk ∈ Rd with ∥θk∥2 ≤ 1 so that ∀t:

E[rk(t)|xt] = θk
⊤xt = θn

k
⊤xt + Lθs

k
⊤xt,

where θn
k and θs

k are respectively the optimal parameters for
the noisy reward rnk and the sparse reward rnk .

Algorithm 1 Contextual Bandit with Sparse and Noisy Feed-
back

1: Repeat
2: (xt, rt) is drawn according to some distribution
3: xt is revealed to the player
4: The player chooses an action k
5: The reward rnk (t) is revealed
6: The reward rsk(t) is revealed with a probability L

7: The player updates its parameter θ̂k(t)
8: t← t+ 1
9: Until t=T

Assumption 1. The two rewards are independent, but we as-
sume a fixed and known gap between their expectations:

∀k ∈ [K],∀t, θs
k
⊤xt = θn

k
⊤xt + ϕ, where ϕ ∈ R. (1)

Assumption 2 (Sub-Gaussian noise:). ∀ x ∈ X and ∀k ∈
[K], the noise of the sparse ϵsk(t) = rsk(t) − x⊤

t θk and the
noise of the noisy rewards ϵnk (t) = rnk (t) − x⊤

t θk are condi-
tionally ρs-sub-Gaussian and ρn-sub-Gaussian respectively,
with ρn ≥ ρs ≥ 0, that is for all t ≥ 1,

∀ λ ∈ R, E[eλϵ
i
k(t)] ≤ exp

(
λ2ρ2i
2

)
.

with i ∈ {n, s}

Definition 1 (Cumulative regret in our setting). The pseudo-
regret at time T is given as:

R(T ) =

T∑
t=1

θk
⊤xt −

T∑
t=1

θ̂k(t)
⊤
xt,

=

T∑
t=1

[
θn
k
⊤xt + Lθs

k
⊤xt

]
−

T∑
t=1

[
θ̂n
k (t)

⊤
xt + Lθ̂s

k(t)
⊤
xt

]
,

= (1 + L)

T∑
t=1

[
θn
k
⊤xt − θ̂n

k (t)
⊤
xt

]
. (2)

3.1. Algorithm description

One solution to the contextual bandit problem is the LINUCB
algorithm proposed in [12], where the key idea is to apply
online ridge regression to incoming data to obtain an estimate
of the coefficients θk for k = 1, . . . ,K. At each time step
t, the LINUCB policy selects the arm with the highest up-
per confidence bound of the reward k(t) = argmaxk(θ

⊤
k xt +

ck), where ck = α
√
x⊤
t A−1

k xt is the standard deviation of
the corresponding reward scaled by exploration-exploitation
trade-of parameter α (chosen a priori) and Ak is the covari-
ance of the k-th arm context. LINUCB requires a reward for
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the chosen arm k, rk(t), to be observed to perform its up-
dates. In our setting, since the learner received two rewards,
the noisy and the sparse rewards rnk ∈ R and rsk ∈ R, we need
to adjust LINUCB algorithm to learn from the noisy rewards
as well.

In order to be robust to variations in the noisy reward’s
quality, we only allow noisy reward to vary within agent’s
beliefs. To make use of the noisy rewards, we consider a fil-
tering mechanism that constrain the noisy reward to be within
the upper and lower bound of the expected sparse reward for
the chosen arm: where rn

′

k (t) denotes the filtered reward. The
intuition here is to use the upper and lower bound of the sparse
reward as an index of the quality of the noisy rewards. If the
noisy reward is in the confidence interval of the sparse reward
csk (see Algorithm 2, line 11), we accept it, otherwise we re-
place it by the lower or the upper bound of the sparse reward.


rnk (t) ≥ θ̂s⊤

k xt − ϕ+ csk, rn
′

k (t)← θ̂s⊤
k xt − ϕ+ csk,

rnk (t) ≤ θ̂s⊤
k xt − ϕ− csk, rn

′

k (t)← θ̂s⊤
k xt − ϕ− csk,

else rn
′

k (t)← rnk (t).
(3)

Equation 3 in the proposed algorithm (ILINUCB) only al-
lows noisy rewards to vary within agent’s beliefs. ILINUCB
is summarized in Algorithm 2.

Algorithm 2 ILINUCB for contextual Multi-armed bandit
1: Input: α
2: ∀k ∈ [K],Ak ← Id+1,Sk ← Id+1, bk ← 0d+1, bsk ←

0d+1, θk ← 0d+1, θs
k ← 0d+1.

3: for t = T0 + 1 to T do
4: observe xt

5: for all k ∈ [K] do

6: θ̂k ← A−1
k ∗ bk, ck ← α

√
x⊤
t A−1

k xt,

7: θ̂s
k ← S−1

k ∗ bsk, csk ← α
√
x⊤
t S−1

k xt

8: end for
9: play arm k = argmaxk(θ̂

⊤
k xt + ck)

10: observe rnk (t) and if rsk(t) exist then h(t) ← 1 else
h(t)← 0

11: Compute rn
′

k according to equation (3)
12: r′k(t)← h(t)rsk(t) + rn

′

k (t)
13: Sk ← Sk + h(t)xtx

⊤
t , bsk ← bsk + h(t)rsk(t)xt

14: Ak ← Ak + xtx
⊤
t ,

15: bk ← bk + r′k(t)xt

16: end for

4. EXPERIMENTAL RESULTS

We compared the performance of our proposed algorithms in
various experimental settings. In these experiments, our aim
was to investigate the effect of the sparsity and the level of

noise in the noisy feedback on the performance of the algo-
rithms. Since the problem is new, there is no directly compa-
rable solution in existing work that considers noisy and sparse
rewards. Therefore, we compared our proposed algorithm IL-
inUCB with D-LinUCB which only consumes sparse rewards
and ID-LinUCB which consumes noisy rewards but in an un-
controlled manner such that it does not perform the bound
check as outlined in our algorithm.

We experimented on two parameters: L:sparsity, p: proba-
bility of noise in noisy rewards. For L, we experimented with
different sparsity levels. Going from one observed reward by
100 iterations to one observed reward by 1000 iterations.

For p, we experimented with values within the range [0-
1], where p=0 represents the case of having perfect noisy re-
wards, in other words, the noisy rewards being exactly the
same as the sparse rewards. p=1 represents the setting where
noisy rewards are always noisy. Therefore, as p increases, the
noise in the noisy reward increases. For each test case, we run
the experiments for 100 times, and take the average of both
the correctness metrics and the number of pulls. note that in
all experiments we are setting the Φ = 0.

For evaluating ILinUCB, Warfarin dataset [23] is used.
This data set is concerned with determining the correct initial
dosage of the drug Warfarin for a given patient and it contains
5528 patients’ records where each record has 65 features. The
dosage is discretized to three levels: low, medium and high. In
our setting, each record corresponds to a timepoint and each
dosage level corresponds to an arm. For each time point, if the
correct arm is pulled, then the learner receives a sparse reward
of value 1, otherwise 0.

Selected results of the experiments with ILinUCB and the
baselines are presented in Figure 1. For lower values of p, we
can observe the benefit of consuming noisy rewards as both
ID-LinUCB and ILinUCB have lower regret than D-LinUCB.
This is as expected since if we have additional feedback that
are good approximations of sparse feedback, this results in
less total regret. When the noise in the feedback increases,
the gap between the regret of ILinUCB and ID-LinUCB in-
crease. This proves the benefit of controlling the consumption
of noisy feedback with the bound check in ILinUCB. This
finding confirms with the findings we observed from the ex-
periments with non contextual settings in terms of the effect
of sparsity and noise in rewards on the overall performance of
our proposed algorithms.

We can conclude two important findings from these ex-
periments. First, if we have additional evidence which is to
a degree well aligned with the sparse rewards, we can have
lower regrets through consuming these noisy additional evi-
dences. However, if there is a possibility of high noise in the
noisy rewards, they should be bounded by the algorithm as
otherwise the noise can increase the regret of the algorithm
significantly.
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(a) p = 0.2, (b) p = 0.3, (c) p = 0.5

Fig. 1. Experiments with ILinUCB and baselines for varying sparsities and probabilities of noise in rewards on Warfarin dataset.

4.1. Customer Assistant Evaluation:

Next we evaluate our methods on Customer Assistant, a pro-
prietary multi-skill dialog orchestration dataset. Recall that
this kind of application motivates the contextual bandit with
sparse and noisy feedback setting because there is a naturally
two types of rewards that we can collect:

1- Noisy rewards: this reward is an estimated reward that
we get from the time the user spent in the clicked link rec-
ommended. So we basically use the historical data to define
the maximum and minimum time spent in a clicked link, and
normalize the reward to be between [0,1].

2- Sparse rewards: this rewards based on the number of
stars the users is giving to the answer he received, so we have
a five stars evaluation maximum and 0 minimum, and we nor-
malize the results to be between [0,1].

The Customer Assistant orchestrates 9 domain specific
agents which we arbitrarily denote as Skill1, . . . , Skill9 in
the discussion that follows. In this application, example skills
lie in the domains of payroll, compensation, travel, health
benefits, and so on. In addition to a textual response to a user
query, the skills orchestrated by Customer Assistant also re-
turn the following features: an intent, a short string descriptor
that categorizes the perceived intent of the query, and a confi-
dence, a real value between 0 and 1 indicating how confident
a skill is that its response is relevant to the query. Skills have
multiple intents associated with them. The orchestrator uses
all the features associated with the query and the candidate re-
sponses from all the skills to choose which skill should carry
the conversation.

The Customer Assistant dataset contains 28,412 events
associated with a correct skill response. We encode each
query by averaging 50 dimensional GloVe word embeddings
for each word in each query and for each skill we create a fea-
ture set consisting of its confidence and a one-hot encoding
of its intent. The skill feature set size for Skill1, . . . , Skill9
are 181, 9, 4, 7, 6, 27, 110, 297, and 30 respectively. We
concatenate the query features and all of the skill features to
form a 721 dimensional context feature vector for each event
in this dataset.

In a live setting the query features are immediately calcu-
lable or known, whereas the confidence and intent necessary

Fig. 2. Total Average Reward for Customer Assistant

to build a skill’s feature set are unknown until a skill is exe-
cuted. Because the confidence and intent for a skill are both
accessible post execution, we reveal them together.

In Figure 2 is giving the average rewards we get per iter-
ation. Note that we have run the experiment 1000 times, and
we have grouped the iterations that have the same number of
sparse rewards. So we get 3 cluster of respectively 20, 30 and
40 percent of sparse reward observed. We can see that the
higher the sparsity the lower the rewards for all the algorithm.
We can also notice that ILINUCB is having high average re-
wards compared with the other two algorithms which confirm
the usefulness of our approach.

5. CONCLUSION

In real life application of the question answering system, the
feedback that is available is most often only a noisy proxy
for the actual reward. This paper proposes a new stochastic
multi-armed bandit model in which each action has a noisy
and a sparse rewards. We have studied this problem in con-
textual bandit, and propose algorithm that is based on LIN-
UCB framework. We have done a regret analysis of the pro-
posed algorithm and a naive possible solutions to the problem,
we showed empirically that our proposed approaches have a
better regret than the naive one, we have also verified on sev-
eral real world data-sets the empirical performance of the pro-
posed algorithm.
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